The LinBox library

Algorithmic models

Clément PERNET & the LinBox group

CAT Workshop, Aug 29, 2009

Introduction

Exact linear algebra:

- over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_p, \mathsf{GF}(p^k)$.
- matrix-multiply, solve, rank, det, echelon, charpoly, Smith-Normal-Form, ...
- dense, sparse, blackbox matrices

Exact linear algebra:

- over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_p, \mathsf{GF}(p^k)$.
- matrix-multiply, solve, rank, det, echelon, charpoly, Smith-Normal-Form, ...
- dense, sparse, blackbox matrices

Growing applicative demand

- CAT: Homology of simplicial complexes
- Number Theory: computing modular forms,
- Crypto: NFS, DLP Groebner bases, ...
- Graph Theory: closure, spectrum, ...
- High precision approximate linear algebra
- ... (Mathematics is the art of reducing any problem to linear algebra [W. Stein])

Software solutions for exact computations

Specialized libraries

finite fields: NTL, Givaro, Lidia, ...

integers: GMP, MPIR

polynomials: NTL, Givaro, zn_poly ...

Software solutions for exact computations

Algorithmic models

Specialized libraries

finite fields: NTL, Givaro, Lidia, ...

integers: GMP, MPIR

polynomials: NTL, Givaro, zn poly ...

End-user level softwares

- Maple, Mathematica, MuPad, ... (closed source)
- Sage, Pari, Maxima, ... (open source)

Specialized libraries

finite fields: NTL, Givaro, Lidia, ...

integers: GMP, MPIR

polynomials: NTL, Givaro, zn_poly ...

End-user level softwares

- Maple, Mathematica, MuPad, ... (closed source)
- Sage, Pari, Maxima, ... (open source)

Linear Algebra?

Algorithmic models

Introduction

- Organization and design
- Algorithmic models
 - Black box matrices
 - Dense matrices
 - Sparse matrices
 - Lifting over the integers
- Evolution and perspectives

- Organization and design
- - Black box matrices

 - Sparse matrices
 - Lifting over the integers

A generic middleware

- uses basic implementations from specialized libraries (GMP, Givaro, NTL, BLAS...)
- Optional libraries used in a Plug & Play manner
- Interfaces to top-level softwares (Maple, Sage, GAP)

The LinBox project, facts

Joint NFS-NSERC-CNRS project.

US: U. of Delaware, North Carolina State U.

Algorithmic models

Canada: U. of Waterloo, U. of Calgary,

France: Grenoble U., INRIA (Lyon, Grenoble)

Joint NFS-NSERC-CNRS project.

US: U. of Delaware, North Carolina State U.

Canada: U. of Waterloo, U. of Calgary,

France: Grenoble U., INRIA (Lyon, Grenoble)

A LGPL source library:

- 125 000 lines of C++ code
- about 5 active developers
- Availaible online: http://linalg.org
- Google groups: linbox-devel, linbox-use
- Distributed in Debian and Sage

Algorithmic models

Features:

Solutions

- rank
- det
- minpoly
- charpoly
- solve
- positive definiteness
- Smith normal form

Design of LinBox v1

Features:

Solutions

- rank
- det
- minpoly
- charpoly
- solve
- positive definiteness
- Smith normal form

Domains of computation

- \bullet \mathbb{Z}_p , \mathbb{F}_q
- Z

Matrices

- Dense
- Sparse
- Blackbox

Genericity

Domain wrt. element representations:

```
template <class Element>
class Modular<Element>;
```

Matrix wrt_domains:

```
template <class Field>
class DenseMatrix<Field>;
```

• Algorithms wrt. matrices:

```
template <class Matrix>
unsigned long rank (unsigned long & r,
                    const Matrix & A);
```

Interface

Field/Ring Plug & Play interface

Common interface with Givaro

```
Modular<int> F(11);
int x, y, z;
F.init(x,2);
F.init(y, 13);
F.mul(z,x,y);
```

- Wraps NTL, Lidia, Givaro implementations
- Proper floating point based implementations for dense computations

BLAS

Compliant with the standard C-BLAS interface

GotoBLAS, ATLAS, MKL, GSL, ...

Structure of the library

Several levels of use

• Web servers: http://www.linalg.org

Several levels of use

- Web servers: http://www.linalg.org
- Executables: \$ charpoly MyMatrix 65521

- Web servers: http://www.linalg.org
- Executables: \$ charpoly MyMatrix 65521
- Call to a solution:

```
NTL::ZZp F(65521);
Toeplitz<NTL::ZZp> A(F);
Polynomial<NTL::ZZp> P;
charpoly (P, A);
```

Several levels of use

- Web servers: http://www.linalg.org
- Executables: \$ charpoly MyMatrix 65521

Algorithmic models

Call to a solution:

```
NTL::ZZp F (65521);
Toeplitz<NTL::ZZp> A(F);
Polynomial<NTL::ZZp> P;
charpoly (P, A);
```

Calls to specific algorithms

Outline

- Organization and design
- Algorithmic models
 - Black box matrices
 - Dense matrices
 - Sparse matrices
 - Lifting over the integers
- Evolution and perspectives

Introduction

Evolution and perspectives

- Matrices viewed as linear operators
- algorithms based on matrix-vector apply only \Rightarrow cost E(n)

- Matrices viewed as linear operators
- algorithms based on matrix-vector apply only \Rightarrow cost E(n)

Structured matrices: Fast apply (e.g. $E(n) = \mathcal{O}(n \log n)$)

Sparse matrices: Fast apply and no fill-in

- Matrices viewed as linear operators
- algorithms based on matrix-vector apply only \Rightarrow cost E(n)

Structured matrices: Fast apply (e.g. $E(n) = \mathcal{O}(n \log n)$) Sparse matrices: Fast apply and no fill-in

- Iterative methods
- No access to coefficients, trace, no elimination
- Matrix multiplication ⇒ Black-box composition

Minimal polynomial: [Wiedemann 86]

⇒adapts numerical iterative Krylov/Lanczos methods

$$\Rightarrow \mathcal{O}\left(dE(n) + n^2\right)$$
 operations

```
Minimal polynomial: [Wiedemann 86]
```

⇒adapts numerical iterative Krylov/Lanczos methods

$$\Rightarrow \mathcal{O}\left(dE(n)+n^2\right)$$
 operations

Rank, Det, Solve: [Kaltofen & Saunders 90, Chen& Al. 02]

⇒reduced to minimal polynomial and preconditioners

$$\Rightarrow \mathcal{O}^{\sim}(nE(n)+n^2)$$
 operations

where E(n): cost of applying the matrix to a vector

```
Minimal polynomial: [Wiedemann 86]
```

⇒adapts numerical iterative Krylov/Lanczos methods

$$\Rightarrow \mathcal{O}\left(dE(n) + n^2\right)$$
 operations

Rank, Det, Solve: [Kaltofen & Saunders 90, Chen& Al. 02]

⇒reduced to minimal polynomial and preconditioners

$$\Rightarrow \mathcal{O}^{\sim}(nE(n)+n^2)$$
 operations

where E(n): cost of applying the matrix to a vector

Smith Normal Form: [Dumas & Al. 02] cf. J-G. Dumas talk

Building block: **matrix mutlip. over word-size finite field** Principle:

- Delayed modular reduction
- Floating point arithmetic (fused-mac, SSE2, ...)

Building block: matrix mutlip. over word-size finite field Principle:

- Delayed modular reduction
- Floating point arithmetic (fused-mac, SSE2, ...)
- cache tuning
- ⇒rely on the existing BLAS

Building block: **matrix mutlip. over word-size finite field** Principle:

- Delayed modular reduction
- Floating point arithmetic (fused-mac, SSE2, ...)
- cache tuning
- ⇒rely on the existing BLAS

Building block: **matrix mutlip. over word-size finite field** Principle:

- Delayed modular reduction
- Floating point arithmetic (fused-mac, SSE2, ...)
- cache tuning
- ⇒rely on the existing BLAS

inse manices. Fr LAS-FFFACK

Building block: **matrix mutlip. over word-size finite field** Principle:

- Delayed modular reduction
- Floating point arithmetic (fused-mac, SSE2, ...)
- cache tuning
- ⇒rely on the existing BLAS
- Sub-cubic algorithm (Winograd)

Evolution and perspectives

Design of other dense routines

- Reduction to matrix multiplication
- Bounds for delayed modular reductions.

Design of other dense routines

- Reduction to matrix multiplication
- Bounds for delayed modular reductions.
- ⇒Block algorithm with multiple cascade structures

Design of other dense routines

- Reduction to matrix multiplication
- Bounds for delayed modular reductions.
- ⇒Block algorithm with multiple cascade structures

	11	1000	2000	3000	5000	10000
TRSM	ftrsm dtrsm	1,66	1,33	1,24	1,12	1,01
LQUP	lqup dgetrf	2,00	1,56	1,43	1,18	1,07
INVERSE	inverse dgetrf+dgetri	1.62	1.32	1.15	0.86	0.76

Characteristic Polynomial

	n	500	5000	15 000
l:	LinBox	0.91s	4m44s	2h20m
	magma-2.13	1.27s	15m32s	7h28m

Sparse Matrices

Two approaches:

Blackbox:

- No fill-in,
- $E(n) = \mathcal{O}(\#\text{non-zero-elt})$

Sparse elimination:

- local pivoting strategies
- switch to dense elimination when too much fill-in

Lifting over the integers

Multimodular reconstruction

- scalars and vectors
- early termination (with user-specified probability of success)
- or deterministic (e.g. Hadamard's bound)

p-adic lifting

dense matrices: Dixon's lifting with LU decomposition

blackbox/sparse matrices: no inverse nor LU can be computed

- Wiedemann lifter
- block-Wiedemann lifter
- block-Hankel lifter

Outline

- Organization and design
- 2 Algorithmic models
 - Black box matrices
 - Dense matrices
 - Sparse matrices
 - Lifting over the integers
- 3 Evolution and perspectives

Block Krylov projections

Wiedemann algorithm: scalar projections of Aⁱ for i = 0..2d:

$$u^T v, u^T A v, \dots, u^T A^{2d/k} v$$
 such that u, v are $n \times 1$

• Block Wiedemann: $k \times k$ dense projections of A^i for i = 1..2d/k

$$U^T V, U^T A V, \dots, U^T A^{2d/k} V$$
, such that U, V are $n \times k$

Block Krylov projections

 Wiedemann algorithm: scalar projections of Aⁱ for i = 0..2d:

$$u^T v, u^T A v, \dots, u^T A^{2d/k} v$$
 such that u, v are $n \times 1$

• Block Wiedemann: $k \times k$ dense projections of A^i for i = 1..2d/k

$$U^T V, U^T A V, \dots, U^T A^{2d/k} V$$
, such that U, V are $n \times k$

- Building block of the most recent algorithmic advances
- In practice : better balance efficiency between Blackbox and dense methods

Packed matrices over small finite fields

- GF(2): M4RI [Albrecht, Bard & Al.]
 - Packed representation of elements:
 long long ≡ GF(2)⁶⁴
 - Greasing technique: tables, and Gray codes
 - SSE2 support and cache friendliness
 - sub-cubic matrix arithmetic

Packed matrices over small finite fields

GF(2): M4RI [Albrecht, Bard & Al.]

- Packed representation of elements: long long $\equiv GF(2)^{64}$
- Greasing technique: tables, and Gray codes

Algorithmic models

- SSE2 support and cache friendliness
- sub-cubic matrix arithmetic

GF(3, 5, 7): similar projects [Bradshaw, Boothby]

 $GF(p), p < 2^8$: Kronecker substitution [Dumas 2008]

$$(a_1, a_2, a_3) \rightarrow a_1 X^2 + a_2 X + a_2 \rightarrow \underbrace{a_1 \alpha^2 + a_2 \alpha + a_2}_{\text{integer on 64 bits}}$$

Packed matrices over small finite fields

GF(2): M4RI [Albrecht, Bard & Al.]

- Packed representation of elements:
 - long long $\equiv GF(2)^{64}$
- Greasing technique: tables, and Gray codes
- SSE2 support and cache friendliness
- sub-cubic matrix arithmetic

GF(3, 5, 7): similar projects [Bradshaw, Boothby]

 $GF(p), p < 2^8$: Kronecker substitution [Dumas 2008]

$$(a_1, a_2, a_3) \rightarrow a_1 X^2 + a_2 X + a_2 \rightarrow \underbrace{a_1 \alpha^2 + a_2 \alpha + a_2}_{\text{integer on 64 bits}}$$

→Matrices are no longer containers of field elements

Evolution and perspectives

LinBox 2.0 in the radar: major rewrite of the the library

- Clean up and simplify existing code
- Unify the usage block-Krylov/Wiedemann
- Redesign dense matrices (enabling packing for small finite fields)
- Support for new architecture framework : GPU, GPU/CPU, multi-core, grid computing...
 - ⇒Workstealing and adaptive scheduling libs: Cilk, Kaapi
- New algorithms...